函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。
对称美是数学美。
对称是函数的性质之一
对称性质可以简化许多问题
对称可以让数学图形拥有不一样的美
对称性质让做题时有更多的思路
对称不只出现在几何学中,也在数学领域的其他分支中出现,对称其实就是不变量,是指某特性不随数学转换而变化。
若一个物件可以借由另一个物件的不变转换来得到,二个物件借由不变转换有互相对称关系,这是一种等价关系
在对称函数中,函数的输出值不随输入变数的排列而改变,这些排列形成一个群,也就是对称群。在欧几里得几何中的等距同构中,也有使用“对称群”一词,更广泛的用法是自同构群。
编辑一对称矩阵可以视为是行编号及列编号的对称函数,行编号和列编号对调后,数值不变。一些有适当光滑性的函数,其二阶偏导数也可以视为是对称函数,参照二阶导数的对称性。
一个二元关系为对称关系当且仅当其布尔值函数为对称函数。
一个二元关系满足交换律若其运算子(可视为二个变数的函数)为为对称函数。满足交换律的二元关系包括联集,交集及对称差。
伽罗瓦理论的主题在处理数学域中隐藏的对称性。
对偶也是一个和对称有关的数学概念
在坐标空间中可以考虑几何中的对称。如果称一物件为对一给定的运算为对称的话,即表示若作用在此一物件上时,此一运算并不会改变此物件或其外观。在二维几何中,较有兴趣的几种主要的对称为相对于基本之欧几里得空间等距的:平移、旋转、镜射及滑移镜射,可以用点群表示。三维空间中的三维点群则更为复杂。
在二十世纪以前,群和变换群(群作用)为同义词,一直到二十世纪初期才有不用群作用来定义群的抽象定义